Concours interne EIVP 2019

Première page consacrée à la date, le nom du concours, etc.

Le sujet est composé de deux exercices et un problème totalement indépendants.

Exercice 1

On considère la matrice $A=\begin{pmatrix}1&6\\1&0\end{pmatrix}$. On note I_2 la matrice identité de $M_2(\mathbb{R})$. Par convention, $A^0=I_2$.

- 1) Calculer A^2 . Montrer qu'il existe deux réels x et y, qu'on donnera, tels que $A^2 = xA + yI_2$.
- 2) Montrer par récurrence que, pour tout entier n positif ou nul, il existe deux réels a_n et b_n , qu'on ne demande pas de calculer, tels que $A^n = a_n A + b_n I_2$.
- 3) Montrer que, pour tout $n \in \mathbb{N}$, $a_{n+2} = a_{n+1} + 6a_n$.
- 4) Montrer que, pour tout $n \in \mathbb{N}$, $a_n = \frac{1}{5} (3^n (-2)^n)$. Pour tout $n \in \mathbb{N}$, déterminer b_n .

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par ses deux premiers termes $u_0=-\frac{1}{2}$, $u_1=1$ et la relation de récurrence $u_{n+2}=u_{n+1}+6u_n+3$. On pose $B=\begin{pmatrix}3\\0\end{pmatrix}$, $L=-\begin{pmatrix}\frac{1}{2}\\\frac{1}{2}\end{pmatrix}$ et, pour tout entier naturel n,

$$X_n = \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix}.$$

- 4.a) Montrer que pour tout entier naturel n on a : $X_{n+1} = AX_n + B$.
- 4.b) Vérifier que AL + B = L.
- 4.c) Montrer par récurrence que pour tout entier naturel n, on a $X_n = A^n (X_0 L) + L$.
- 4.d) Déduire des questions précédentes que, pour tout entier naturel n on a :

$$u_n = \frac{3}{10} (3^n - (-2)^n) - \frac{1}{2}.$$

Exercice 2

Dans tout l'exercice, on note $M_3(\mathbb{R})$ l'ensemble des matrices carrées d'ordre 3 et I_3 la matrice identité d'ordre 3. On considère la matrice A définie par :

$$A = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 2 & 2 \\ -3 & 3 & 1 \end{pmatrix}.$$

On se propose de déterminer deux matrices $M \in M_3(\mathbb{R})$ telles que $M^2 = A$.

1) Calculer les matrices $(A-I_3)^2$ et $(A-I_3)^3$.

On pose, $\forall x \in]-1,1[, \varphi(x) = \sqrt{1+x}]$.

- 2.a) Justifier que φ est de classe C^2 sur]-1,1[, et déterminer les valeurs de $\varphi'(0)$ et $\varphi''(0)$.
- 2.b) En déduire le développement limité de φ à l'ordre 2 au voisinage de 0.
- 3) On pose, pour tout x réel, $P(x) = 1 + \frac{1}{2}x \frac{1}{8}x^2$. Développer $(P(x))^2$.
- 4) On pose $N = A I_3$ et $C = I_3 + \frac{1}{2}N \frac{1}{8}N^2$. Calculer C^2 . En déduire deux matrices M_1 et M_2 solutions de l'équation $M^2 = A$.

Problème:

On pose $I_0 = \int_0^1 e^{-x^2} dx$ et pour tout entier $n \ge 1$, $I_n = \int_0^1 x^n e^{-x^2} dx$.

- 1.a) Etablir pour tout $x \in [0,1]$, l'encadrement : $0 \le e^{-x^2} \le 1$.
- 1.b) En déduire que pour tout entier $n \ge 0$, on a : $0 \le I_n \le \frac{1}{n+1}$.
- 1.c) En déduire que la suite $\left(I_n\right)_{n\in\mathbb{N}}$ converge et donner sa limite.
- 2) Soit f la fonction définie sur l'intervalle [0,1] par : $\forall x \in [0,1]$, $f(x) = e^{-x^2}$. On note f' la dérivée de f.
- 2.a) Pour tout $x \in [0,1]$, calculer f'(x).
- 2.b) En déduire que $I_1 = \frac{1}{2} \frac{1}{2e}$.

- 3.a) En remarquant que $x^{n+2}e^{-x^2}=x^{n+1}\times xe^{-x^2}$ et à l'aide d'une intégration par parties, établir pour tout entier $n\geq 0$, la relation : $I_{n+2}=\frac{n+1}{2}I_n-\frac{1}{2e}$.
- 3.b) Déterminer la limite de nI_n lorsque $n \to +\infty$.
- 4) Pour tout entier $n \ge 0$, on pose $u_n = \frac{I_{2n+1}}{n!}$.
- 4.a) Etablir la relation : $u_{n+1} = u_n \frac{1}{2e} \times \frac{1}{(n+1)!}$. En déduire que : $\forall n \in \mathbb{N}$, $u_n = \frac{1}{2} \frac{1}{2e} \sum_{k=0}^{n} \frac{1}{k!}$.
- 4.b) Quelle est la limite de la suite $\left(u_n\right)_{n\in\mathbb{N}}$? En déduire que la suite $\left(\sum_{k=0}^n\frac{1}{k!}\right)_{n\in\mathbb{N}}$ converge et donner sa limite.
- 5) En utilisant la question précédente, donner sous forme de somme, l'expression de I_{2n+1} en fonction de n.

Dans les questions qui suivent, on note J_n l'intégrale suivante : $J_n = \int_0^{+\infty} x^n e^{-x^2} dx$.

- 6) Soit A un réel, A > 0. Calculer $\int_0^A x e^{-x^2} dx$. En déduire que l'intégrale J_1 est convergente, et donner sa valeur.
- 7) Soit A un réel, A>0, et n un entier positif ou nul. En remarquant que $x^{n+2}e^{-x^2}=x^{n+1}\times xe^{-x^2}$ et à l'aide d'une intégration par parties, trouver une relation entre $\int_0^A x^{n+2}e^{-x^2}dx$, $\int_0^A x^ne^{-x^2}dx$ et A. En déduire que, si l'intégrale J_n est convergente, l'intégrale J_{n+2} l'est aussi et que :

$$J_{n+2} = \frac{n+1}{2}J_n.$$

8) Montrer que pour tout $p \in \mathbb{N}^*$, l'intégrale J_{2p+1} est convergente et que $J_{2p+1} = \frac{p!}{2}$.

9) Montrer que pour tout $p \in \mathbb{N}^*$, l'intégrale J_{2p} est convergente et que $J_{2p} = \frac{1 \times 3 \times ... \times (2p-1)}{2^{p+1}}$.